
Security Assessment

YouSwap

Apr ��th, ����

Summary

This report has been prepared for YouSwap smart contracts, to discover issues and vulnerabilities in

the source code of their Smart Contract as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Dynamic

Analysis, Static Analysis, and Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry

standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts

produced by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

Additionally, this audit is based on a premise that all external smart contracts are implemented safely.

The security assessment resulted in �� findings that ranged from major to informational. We

recommend addressing these findings to ensure a high level of security standards and industry

practices. We suggest recommendations that could better serve the project from the security

perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases given they are currently missing in the

repository;

Provide more comments per each function for readability, especially contracts are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

YouSwap Security Assessment

Overview

Project Summary

Project Name YouSwap

Description Multi-chain interoperability DEX based on AMM model

Platform Ethereum, Heco

Language Solidity

Codebase https://github.com/YouSwap/contracts/tree/�be��be�ee�fe�cafebdae�a����cff����f��b�

Commits �be��be�ee�fe�cafebdae�a����cff����f��b�

Audit Summary

Delivery Date Apr ��, ����

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Total Issues ��

Critical �

Major �

Minor �

Informational ��

Discussion �

YouSwap Security Assessment

Audit Scope

ID file SHA��� Checksum

YSF
v�-core/YouSwapFact

ory.sol
��������b��cbc�e�a�bfb�bca���a�cc�b�a�ca���c�f�bb�de�b�dbc��dbd�

RYS
v�-core/token/Repurc

hase.sol
��a��a�c��ac�����cddae��cb��e�����d��b���ddafcd�f�����a���ff�fca

YFV
v�-mining/implement/

YouswapFactoryV�.sol
c�����e�f����c������������e���ecfd���b�����aed�����b��b���c��fb�

YIV
v�-mining/implement/

YouswapInviteV�.sol
c�eb����������cb�ac�����a�����beb��e���b������fdf��d������bdd��c

ECY
v�-mining/library/Error

Code.sol
db���fbdb�e��cbce���c����e�a������a��c��bac�����d���f�e�d��ed�d�

YSR
v�-periphery/YouSwap

Router.sol
����dc��dbaa���c�ae�c���fd��������ac��������e��ec���de�bec���ad�

YSL
v�-periphery/libraries/

YouSwapLibrary.sol
��abec������e�d�b����df�d�fedbdfea����a�b������dd�d��b��b���c���

YouSwap Security Assessment

Findings

ID Title Category Severity Status

RYS-�� Missing Emit Events Coding Style Informational Declined

RYS-��
Proper Usage of “public” And

“external” Type
Gas Optimization Informational Declined

RYS-��
Missing Check For The Result of

Transfer
Logical Issue Informational Declined

RYS-�� Centralization Issue
Centralization /

Privilege
Minor Acknowledged

RYS-�� Addresses On Testnet Logical Issue Informational Acknowledged

YFV-�� Missing Emit Events Coding Style Informational Declined

YFV-�� Incorrect Statement In Require Logical Issue Informational Declined

YFV-�� Add Modifiers For Checking Variables Logical Issue Informational Declined

YFV-��
Check Effect Interaction Pattern

Violated
Logical Issue Minor Acknowledged

YFV-��
Discussion For

YouswapInviteV�.inviteBatch()
Logical Issue Informational Declined

YIV-�� Check The Level of The Inviter Logical Issue Minor Declined

YIV-�� Invite Persons Without Allowance Logical Issue Minor Acknowledged

YIV-�� The Invite List Has No Limit Logical Issue Informational Declined

YouSwap Security Assessment

��
Total Issues

Critical � (�.��%)

Major � (�.��%)

Minor � (��.��%)

Informational �� (��.��%)

Discussion � (�.��%)

ID Title Category Severity Status

YSF-�� Missing Zero Address Validation Logical Issue Informational Declined

YSL-�� Hard Code For Init Hash Code Logical Issue Minor Declined

YSR-�� Missing Emit Events Coding Style Informational Declined

YSR-�� Missing Zero Address Validation Logical Issue Informational Declined

YSR-�� Unimplemented Method Logical Issue Major Acknowledged

YouSwap Security Assessment

RYS-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational v�-core/token/Repurchase.sol: ��, ��, ���, ��� Declined

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or call important processes. This suggestion is not limited to these codes

but also applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables or calling important processes.

Alleviation

No alleviation.

YouSwap Security Assessment

RYS-�� | Proper Usage of “public” And “external” Type

Category Severity Location Status

Gas Optimization Informational v�-core/token/Repurchase.sol: ��, ��, ��, ��, ���, ��� Declined

Description

public functions that are never called by the contract could be declared external .

Recommendation

Consider using the external attribute for functions never called from the contract.

Alleviation

No alleviation.

YouSwap Security Assessment

RYS-�� | Missing Check For The Result of Transfer

Category Severity Location Status

Logical Issue Informational v�-core/token/Repurchase.sol: ��� Declined

Description

The function emergencyWithdraw() does not check if the transfer process was successful.

Recommendation

Consider using _safeTransfer() instead of transfer() as below :

_safeTransfer(_token, emergencyAddress, IERC20(_token).balanceOf(address(this)));_safeTransfer(_token, emergencyAddress, IERC20(_token).balanceOf(address(this)));

Alleviation

[YouSwap] response: The balance of this contract is checked before the transfer process, the transfer

process won't fail generally. Once transfer failed, there is no effect. The revert reason can be queried

from blockchain explorer.

YouSwap Security Assessment

RYS-�� | Centralization Issue

Category Severity Location Status

Centralization / Privilege Minor v�-core/token/Repurchase.sol: ��~�� Acknowledged

Description

In function emergencyWithdraw() , the owner can transfer all the _token in this contract to

emergencyAddresses . When will this function be called and what is the _token? Please give an

introduction to this function.

Alleviation

[YouSwap] response: The _token usually refers to USDT . This function was provided to retrieve tokens

from this contract. For example, users transferred the wrong tokens to this contract.

YouSwap Security Assessment

RYS-�� | Addresses On Testnet

Category Severity Location Status

Logical Issue Informational v�-core/token/Repurchase.sol: ��~�� Acknowledged

Description

The addresses USDT ,YOU ,YOU_YSDT ,destroyAddress are addresses on testnet

https://ropsten.etherscan.io , but not mainnet of Ethereum or Heco .

Recommendation

Consider changing related value to addresses of mainnet.

Alleviation

[YouSwap] response: These addresses will be replaced with the official addresses when deploying.

YouSwap Security Assessment

YFV-�� | Missing Emit Events

Category Severity Location Status

Coding

Style
Informational

v�-mining/implement/YouswapFactoryV�.sol: ��, ��, ���, ���, �

�
Declined

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or call important processes. This suggestion is not limited to these codes

but also applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables or calling important processes.

Alleviation

No alleviation.

YouSwap Security Assessment

YFV-�� | Incorrect Statement In Require

Category Severity Location Status

Logical Issue Informational v�-mining/implement/YouswapFactoryV�.sol: ���, ���, ��� Declined

Description

The require statement in function setName() ,setMultiple() ,setPriority() should be the same as the

require statement in function setRewardPerBlock ,setRewardTotal as they are all set the variables of

pollInfo .

Recommendation

Consider modifying the require statement as below :

require((address(0) != poolInfo.lp) && (0 == poolInfo.endBlock),require((address(0) != poolInfo.lp) && (0 == poolInfo.endBlock),
ErrorCode.POOL_NOT_EXIST_OR_END_OF_MINING);ErrorCode.POOL_NOT_EXIST_OR_END_OF_MINING);

Alleviation

No alleviation.

YouSwap Security Assessment

YFV-�� | Add Modifiers For Checking Variables

Category Severity Location Status

Logical

Issue
Informational

v�-mining/implement/YouswapFactoryV�.sol: ��, ��, ���, ���, ���,

���, ���, ���, ���, ���
Declined

Description

Before getting pollInfo , need to check if the variable _pool is less than poolInfos 's length. This can

be added in a modifier.

Recommendation

Consider adding a modifier as below :

modifier checkPool(uint256 _pool) {modifier checkPool(uint256 _pool) {
 require(_pool < poolInfos.length, ErrorCode.POOL_NOT_EXIST_OR_END_OF_MINING); require(_pool < poolInfos.length, ErrorCode.POOL_NOT_EXIST_OR_END_OF_MINING);
 _; _;
 } }

Alleviation

No alleviation.

YouSwap Security Assessment

YFV-�� | Check Effect Interaction Pattern Violated

Category Severity Location Status

Logical Issue Minor v�-mining/implement/YouswapFactoryV�.sol: ��~��� Acknowledged

Description

The order of external call/transfer and storage manipulation must follow a check effect interaction

pattern. This suggestion is not limited to these codes but also applies to other similar codes.

Recommendation

We advise the client to check if storage manipulation is before the external call/transfer operation by

considering the following modification:

 PoolInfo storage poolInfo = poolInfos[_pool]; PoolInfo storage poolInfo = poolInfos[_pool];
 require((address(0) != poolInfo.lp) && (poolInfo.startBlock <= block.number), require((address(0) != poolInfo.lp) && (poolInfo.startBlock <= block.number),
ErrorCode.MINING_NOT_STARTED);ErrorCode.MINING_NOT_STARTED);
 if (0 < _amount) { if (0 < _amount) {
 UserInfo storage userInfo = pledgeUserInfo[_pool][msg.sender]; UserInfo storage userInfo = pledgeUserInfo[_pool][msg.sender];
 require(_amount <= userInfo.amount, ErrorCode.BALANCE_INSUFFICIENT); require(_amount <= userInfo.amount, ErrorCode.BALANCE_INSUFFICIENT);
 } }

 (address _upper1, address _upper2) = invite.inviteUpper2(msg.sender); (address _upper1, address _upper2) = invite.inviteUpper2(msg.sender);

 computeReward(_pool); computeReward(_pool);

 provideReward(_pool, poolInfo.rewardPerShare, poolInfo.lp, msg.sender, _upper1, provideReward(_pool, poolInfo.rewardPerShare, poolInfo.lp, msg.sender, _upper1,
_upper2);_upper2);

 if (0 < _amount) { if (0 < _amount) {
 subPower(_pool, msg.sender, _amount, _upper1, _upper2); subPower(_pool, msg.sender, _amount, _upper1, _upper2);
 } }

 setRewardDebt(_pool, poolInfo.rewardPerShare, msg.sender, _upper1, _upper2); setRewardDebt(_pool, poolInfo.rewardPerShare, msg.sender, _upper1, _upper2);

 if (0 < _amount) { if (0 < _amount) {
 IERC20(poolInfo.lp).safeTransfer(msg.sender, _amount); IERC20(poolInfo.lp).safeTransfer(msg.sender, _amount);

 emit UnStake(_pool, poolInfo.lp, msg.sender, _amount); emit UnStake(_pool, poolInfo.lp, msg.sender, _amount);
 } }

Alleviation

YouSwap Security Assessment

[YouSwap] response: They are sure the function IERC20(poolInfo.lp).safeTransfer() is safe. There is

no risk of reentrancy attack in this function.

YouSwap Security Assessment

YFV-�� | Discussion For YouswapInviteV�.inviteBatch()

Category Severity Location Status

Logical Issue Informational v�-mining/implement/YouswapFactoryV�.sol: ���~��� Declined

Description

The key for mapping inviteUserInfoV2 in function inviteBatch() is msg.sender , If this function is

called by another contract, this will cause a problem.

Recommendation

Please confirm that this situation will not happen.

Alleviation

[YouSwap] response: The inviter can be a contract or a user. So this is not a problem.

YouSwap Security Assessment

YIV-�� | Check The Level of The Inviter

Category Severity Location Status

Logical Issue Minor v�-mining/implement/YouswapInviteV�.sol: ��~��� Declined

Description

According to [YouSwap]'s response. The users who have two levels of superiors can not invite others.

This logic should be checked in functions acceptInvitation() and inviteBatch() .

Recommendation

Consider adding a logic as below :

UserInfo storage inviter = inviteUserInfoV2[_inviter];UserInfo storage inviter = inviteUserInfoV2[_inviter];
if(inviter.upper != ZERO) {if(inviter.upper != ZERO) {
 UserInfo storage upper1 = inviteUserInfoV2[inviter.upper]; UserInfo storage upper1 = inviteUserInfoV2[inviter.upper];
 if(upper1.upper != ZERO) { if(upper1.upper != ZERO) {
 require(false, "_inviter has tow levels of superiors, so he can not invite require(false, "_inviter has tow levels of superiors, so he can not invite
others!");others!");
 } }
}}

Alleviation

[YouSwap] response: Users can have more than two levels of superiors or lowers, but only the nearest

two levels of superiors can get inviting rewards.

YouSwap Security Assessment

YIV-�� | Invite Persons Without Allowance

Category Severity Location Status

Logical Issue Minor v�-mining/implement/YouswapInviteV�.sol: ���~��� Acknowledged

Description

In function inviteBatch() , the _invitees can be added to the invite list without their own consent. In

this case, someone may search addresses from the internet and invite these addresses. The addresses

to be invited may lose the chance to invite others and get the invite rewards since they have two levels

of superiors.

Alleviation

[YouSwap] response: First of all, inviteBatch() will spend the fee. If users plan to participate, they can

change their addresses to participate if they are invited. This is just a publicity mechanism for the

community to actively spend the fee to help and guide a large number of users to participate.

YouSwap Security Assessment

YIV-�� | The Invite List Has No Limit

Category Severity Location Status

Logical Issue Informational v�-mining/implement/YouswapInviteV�.sol: �� Declined

Description

The length of YouswapInviteV1.inviteUserInfoV1() can expand with no limit. When the users that are

invited grows too large. i.e., more than �� millions. Traverse them need consume a lot of gas which may

exceed the gas limit of the blockchain.

Recommendation

Please make a limit of YouswapInviteV1.inviteUserInfoV1() .

Alleviation

[YouSwap] response: There is an invitee limitation. There is no case that needs to traverse a related

array.

YouSwap Security Assessment

YSF-�� | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Informational v�-core/YouSwapFactory.sol: ��, ��, �� Declined

Description

Addresses should be checked before assignment to make sure they are not zero addresses.

Recommendation

Consider adding a zero check.

Alleviation

No alleviation.

YouSwap Security Assessment

YSL-�� | Hard Code For Init Hash Code

Category Severity Location Status

Logical Issue Minor v�-periphery/libraries/YouSwapLibrary.sol: �� Declined

Description

The variable YouSwapFactory.initCodeHash we calculated is

hex'6e6dd6fee5dcabca80a53f8492913bc6349d97ec296c9c105cddcae5e4232a0c' , which is different from

the hash code in YouSwapLibrary.pairFor() . This hash code is generated by YouSwapPair.sol and the

files referenced by YouSwapPair.sol . So when these files are changed, the hash code is changed at the

same time. Hard code may cause inconsistency.

Recommendation

Consider adding codes in YouSwapLibrary.sol as below :

 bytes32 public initCodeHash; bytes32 public initCodeHash;

 constructor(address _factory) public { constructor(address _factory) public {
 require(_factory != address(0), "_factory can not be zero address!"); require(_factory != address(0), "_factory can not be zero address!");
 initCodeHash = YouSwapFactory(_factory).initCodeHash(); initCodeHash = YouSwapFactory(_factory).initCodeHash();
 } }

Then use initCodeHash instead of hard code in YouSwapLibrary.pairFor() to make sure the hash code

is correct even YouSwapPair.sol and the files referenced by YouSwapPair.sol are changed.

Alleviation

[YouSwap] response: The hash code in YouSwapLibrary.pairFor() used the value of variable

YouSwapFactory.initCodeHash calculated during deploying process. They are sure that the hash code

has no problem.

YouSwap Security Assessment

YSR-�� | Missing Emit Events

Category Severity Location Status

Coding Style Informational v�-periphery/YouSwapRouter.sol: �� Declined

Description

Some functions should be able to emit events as notifications to customers because they change the

status of sensitive variables or call important processes. This suggestion is not limited to these codes

but also applies to other similar codes.

Recommendation

Consider adding an emit after changing the status of variables or calling important processes.

Alleviation

No alleviation.

YouSwap Security Assessment

YSR-�� | Missing Zero Address Validation

Category Severity Location Status

Logical Issue Informational v�-periphery/YouSwapRouter.sol: ��, �� Declined

Description

Addresses should be checked before assignment to make sure they are not zero addresses.

Recommendation

Consider adding a zero check.

Alleviation

No alleviation.

YouSwap Security Assessment

YSR-�� | Unimplemented Method

Category Severity Location Status

Logical Issue Major v�-periphery/YouSwapRouter.sol: ���~���, ���~��� Acknowledged

Description

The function ISwapMining(swapMining).swap() hasn't been implemented yet. This protocol can only be

used after such functions to be implemented safely.

Recommendation

Consider implementing this function.

Alleviation

[YouSwap] response: This function is used for expansion in the future. The address of swapMining is

address(0) now.

YouSwap Security Assessment

Appendix

Finding Categories

Gas Optimization

Gas Optimization findings refer to exhibits that do not affect the functionality of the code but generate

different, more optimal EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Mathematical Operations

Mathematical Operation exhibits entail findings that relate to mishandling of math formulas, such as

overflows, incorrect operations etc.

Logical Issue

Logical Issue findings are exhibits that detail a fault in the logic of the linked code, such as an incorrect

notion on how block.timestamp works.

Control Flow

Control Flow findings concern the access control imposed on functions, such as owner-only functions

being invoke-able by anyone under certain circumstances.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that

may result in a vulnerability.

Data Flow

Data Flow findings describe faults in the way data is handled at rest and in memory, such as the result

of a struct assignment operation affecting an in-memory struct rather than an in storage one.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of

private or delete .

Coding Style

YouSwap Security Assessment

Coding Style findings usually do not affect the generated byte-code and comment on how to make the

codebase more legible and as a result easily maintainable.

Inconsistency

Inconsistency findings refer to functions that should seemingly behave similarly yet contain different

code, such as a constructor assignment imposing different require statements on the input variables

than a setter function.

Magic Numbers

Magic Number findings refer to numeric literals that are expressed in the codebase in their raw format

and should otherwise be specified as constant contract variables aiding in their legibility and

maintainability.

Compiler Error

Compiler Error findings refer to an error in the structure of the code that renders it impossible to

compile using the specified version of the project.

YouSwap Security Assessment

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without CertiKʼs prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value of

any “product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to help

our customers increase the quality of their code while reducing the high level of risk presented by

cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiKʼs position

is that each company and individual are responsible for their own due diligence and continuous

security. CertiKʼs goal is to help reduce the attack vectors and the high level of variance associated with

utilizing new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

YouSwap Security Assessment

About

Founded in ���� by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-

class technical expertise, alongside our proprietary, innovative tech, weʼre able to support the success

of our clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

YouSwap Security Assessment

